
BACKPORTING RISC-V VECTOR ASSEMBLY

25 May 2023 First International workshop on RISC-V for HPC 1

Joseph K. L. Lee, Maurice Jamieson, Nick Brown

Outline
• RISC-V Vector Extension (RVV): Brief history and Versions

• RVV-rollback tool: v1.0 to v0.7

• Vector Benchmark: Clang

• Summary

25 May 2023 First International workshop on RISC-V for HPC 2

v1.0
RVV-Rollback.py

v1.0

v0.7

RISC-V Vector Extension (RVV): brief history
• Key feature of RISC-V: modular extensions

• 2015: Vector extension first proposed

• Key ideas: Cray-style, variable sized vectors

• Reconfigure element size and vector length at run time

• Flexible for different microarchitecture implementation

• Small set of instructions (vs typical packed SIMD alternatives)

• 2019: Major version 0.7

• “intended to be stable enough to begin developing toolchains, functional simulators, and initial implementations”

• warning that “backwards-incompatible changes will be made prior to ratification”

• hardware implementations were developed

• 2021: Ratified at version 1.0

• Current and future work:

• Intrinsic API

25 May 2023 First International workshop on RISC-V for HPC 3

RISC-V Vector Extension (RVV): v0.7 vs v1.0
• 32 vector registers

• Implementation defined by:

• ELEN: Max vector element size in bits

• VLEN: Single vector register size in bits

• Runtime settings:

• SEW: Selected element width

• VL: Operational vector length (number of elements to be updated from a vector instruction)

• LMUL: Vector register multiplier (number of vector registers grouped together)

25 May 2023 First International workshop on RISC-V for HPC 4

V0.7 V1.0

Configuration-setting

instructions

vsetvl , vsetvli + vsetivli (immediate VL value)

LMUL 1,2,4,8 +fractional ½, ¼, ⅛

(useful for mixed width operations, reduce register spilling)

Tail/mask agnostic policy 0’s in tail elements

Inactive elements undisturbed

Set tail and inactive undisturbed/agnostic policy explicitly in

vset (ta/tu)(ma/mu)

Other changes: simplified mask register layout, new whole register instructions, renamed instructions…

Instruction encodings are different, not binary compatible!

Why care about v0.7?
• Hardware: off-the-shelf only v0.7: Allwinner D1 SoC with T-Head XuanTie C906

• No v1.0 commercially available yet:

• E.g. XuanTie C908 with RVV 1.0

• Compiler toolchains:

25 May 2023 First International workshop on RISC-V for HPC 5

• Upstream GNU toolchain does not support vector extension

• rvv-next branch – limited support for RVV 1.0

• Older deleted branch rvv-0.7.1 (compiled mirror on EPCC website)

• T-Head provides modified GNU toolchain targeting C906

• GCC 8.4 – Good auto-vectorisation (RVV 0.7)

• GCC 10.2 – Intrinsics support, poor auto-vectorisation (RVV 0.7 & 1.0)

• Mirror on EPCC website

GNU

• LLVM 15 and 16 support RVV v1.0

• Support vector length agnostic (--scalable-vectorization=on) or vector

length specific (--riscv-v-vector-bits-min/max=N)

• Support standard extensions with minimum vector length Zvl*, and

embedded processors Zve*

LLVM

RVV Rollback Tool

• We want to use Clang (and future updated compilers) on current hardware (RVV 0.7)

• One method is to emulate vector instructions (e.g. Vehave)

• Sacrifice performance

• We have vector hardware

• Developed a python tool: rvv-rollback

• https://github.com/RISCVtestbed/rvv-rollback

• This helps us translate RVV 1.0 assembly into RVV 0.7 assembly

25 May 2023 First International workshop on RISC-V for HPC 6

https://github.com/RISCVtestbed/rvv-rollback

RVV Rollback Tool

• Example workflow:

25 May 2023 First International workshop on RISC-V for HPC 7

2. Translate RVV 1.0 assembly to RVV 0.7 using rvv-rollback.py

1. Compile with Clang 15 to obtain RVV 1.0 assembly

• with -march=rv64gcv

• -riscv-v-vector-bits-min=128 for VLS

• -scalable-vectorization=on for VLA,

• use -no-integrated-as

3. Assemble using T-Head’s GNU assembler

• v2.6.1 Xuantie-900-gcc-linux toolchain, available at

https://datashare.ed.ac.uk/handle/10283/4835

RVV Rollback Tool

• This allows us to use the optimizations and automatic vectorisations identified and applied by Clang

• Limitations:

• Some features not supported: e.g. Fractional LMUL

• Immediate value instructions (e.g. vsetivli) / whole register load/store (vl1r, vs1r) :

• Default store vector setting in memory -> reconfigure -> execute -> load vector setting back

• Adds overhead, and often unnecessary because a temporary register can be used, or redundant

• The tool will give suggestion, and user can manually determine appropriate translation

• For testing and benchmarking purpose, should definitely check output

25 May 2023 First International workshop on RISC-V for HPC 8

Vector Benchmark: Setup

• Benchmark: RAJA Performance Suite

• https://github.com/LLNL/RAJAPerf

• Only run single-precision floats

• (C906 vector only supports up to 32 bits)

• Only on single core

25 May 2023 First International workshop on RISC-V for HPC 9

Allwinner D1 StarFive

JH7110 (VF2)

Processor XuanTie C906 SiFive U74

Clock Speed 1.0 GHz 1.5 GHz

Cores 1 4

Cache 32 KB I-cache +

32 KB D-cache

32 KB I-cache +

32 KB D-cache +

2MB L2

Memory 512MB DDR3 8GB DDR4

ISA RV64GC+V0.7 RV64GC

Vector width 128 bit N/A

Vector Benchmark: Compiler flags
• GCC8.4-vector is VLS (for 128 bits)

25 May 2023 First International workshop on RISC-V for HPC 10

Name Compiler RVV Version Compiler flags

GCC8.4-scalar XuanTie GCC8.4 N/A -O3 -march=rv64gc -ffast-math

GCC8.4-vector XuanTie GCC8.4 0.7 -O3 -march=rv64gcv0p7 -ffast-math

Clang15-scalar Clang 15.0 N/A --march=rv64gc -O3 -ffast-math

Clang15-vector-vls Clang 15.0 1.0 -march=rv64gcv -O3 -mllvm --riscv-v-

vector-bits-min=128 -ffast-math

Clang15-vector-vla Clang 15.0 1.0 -march=rv64gcv -O3 -mllvm

-scalable-vectorization=on -ffast-math

Vector Benchmark: Results

• Out of 64 kernels:

• 30 auto-vectorised by GCC 8.4 & Clang 15-VLA & Clang 15-VLS

• 21 auto-vectorised by Clang 15 VLA & Clang 15 VLS

• 8 auto-vectorised by Clang 15 VLS

• 5 not auto-vectorised at all

• -> Clang 15 vectorises more, especially VLS

• As noted in previous talk, some kernels are vectorised, but only scalar branch was executed (for

both GCC and Clang)

• We chose a set of 22 kernels and translated the Clang assembly from RVV 1.0 to 0.7

25 May 2023 First International workshop on RISC-V for HPC 11

• Kernels not vectorised by GCC 8.4

• Pink: D1 GCC-vector

• Purple: D1 Clang-vector-vla

• Green: D1 Clang-vector-vls

• Clang is capable of vectorising

more kernels, and provide

significant speedup for some

• Some kernels are slower with

Clang-vector

Vector Benchmark: Results 1

25 May 2023 First International workshop on RISC-V for HPC 12

Runtime relative to GCC 8.4-scalar on D1

Lower is better

Vector Benchmark: Results 2

25 May 2023 First International workshop on RISC-V for HPC 13

Runtime relative to GCC 8.4-scalar on D1

• Kernels vectorized by GCC 8.4 but only

scalar code executed

• Pink: D1 GCC-vector

• Purple: D1 Clang-vector-vla

• Green: D1 Clang-vector-vls

• GCC-vector ~ GCC-scalar

• Clang with VLS and VLA provide speedup

Runtime relative to GCC 8.4-scalar on D1

Lower is better

Vector Benchmark: Results 3

25 May 2023 First International workshop on RISC-V for HPC 14

• Kernels vectorised by GCC and

exectued

• Pink: D1 GCC-vector

• Purple: D1 Clang-vector-vla

• Green: D1 Clang-vector-vls

• Matrix multiplication (GEMM…): Clang

vectorised but only scalar code

executed

• In some cases VLS significantly faster

than VLA (e.g. ATAX)

• In some cases Clang-vector code even

slower than Clang-scalar (e.g.

GESUMMV)

Runtime relative to GCC 8.4-scalar on D1

Lower is better

Summary

• Explored compiler toolchains that enable vectorisation on RISC-V physical hardware

• No main branch GCC support RVV, bespoke version by T-Head with GCC8.4 does support RVV 0.7

• Less capable of vectorisation than Clang 15, which only supports RVV 1.0

• Developed rvv-rollback tool to backport RVV 1.0 assembly to 0.7

• Significant vectorisation performance difference between GCC, Clang VLA and Clang VLS

• Important to experiment with compiler flags and check vectorised code actually executed

25 May 2023 First International workshop on RISC-V for HPC 15

Thank you!

• EPCC RISC-V Testbed: http://riscv.epcc.ed.ac.uk/

• https://github.com/RISCVtestbed/rvv-rollback

25 May 2023 First International workshop on RISC-V for HPC 16

http://riscv.epcc.ed.ac.uk/
https://github.com/RISCVtestbed/rvv-rollback

	Slide 1: Backporting RISC-V Vector Assembly
	Slide 2: Outline
	Slide 3: RISC-V Vector Extension (RVV): brief history
	Slide 4: RISC-V Vector Extension (RVV): v0.7 vs v1.0
	Slide 5: Why care about v0.7?
	Slide 6: RVV Rollback Tool
	Slide 7: RVV Rollback Tool
	Slide 8: RVV Rollback Tool
	Slide 9: Vector Benchmark: Setup
	Slide 10: Vector Benchmark: Compiler flags
	Slide 11: Vector Benchmark: Results
	Slide 12: Vector Benchmark: Results 1
	Slide 13: Vector Benchmark: Results 2
	Slide 14: Vector Benchmark: Results 3
	Slide 15: Summary
	Slide 16: Thank you!

