
11/29/2023 1

Challenges and Opportunities in the Co-design 
of Convolutions and RISC-V Vector Processors

Sonia Rani Gupta, Nikela Papadopoulou and Miquel Pericàs

Chalmers University of Technology, Sweden



2

Motivation

Inference via Convolutional Neural Network (CNNs) 
require high throughput and low latency

Vector processors can offer
● low latency
● high performance
● energy efficiency

 
Can we use long vector architectures 
(eg RISC-VV)?  

Image credit:
https://blog.paperspace.com/how-to-implement-a-yolo-object-detector-in-pytorch/

https://circuitdigest.com/article/understanding-risc-v-architecture-and-why-it-could-be-a-replacement-for-arm


3

Background: CNN inference

YOLOv3 Object detection
 Convolutional layer: ~98% of total time.

Implementation for convolutional layer:
 im2col+GEMM
 Winograd 
 FFT
 Direct

Image credit -  Nie, Xin & Yang, Meifang & Liu, Wen. (2019). Deep Neural Network-Based Robust 
Ship Detection Under Different Weather Conditions. 10.1109/ITSC.2019.8917475. Image credit:

https://anhreynolds.com/blogs/cnn.html

https://circuitdigest.com/article/understanding-risc-v-architecture-and-why-it-could-be-a-replacement-for-arm


4

Objective

Algorithmic Optimizations:
• Utilize the vector unit and vector registers effectively. 

• Vectorize the Winograd algorithm effectively by leveraging the available 
EPI intrinsics

Hardware Parameters Tuning
• Vector unit: how long should vector lengths be?

• Caches: how large should caches be for different vector lengths? 



5

Objective

Co-design study

Design effective vector architectures 

for high performance CNN inference.

Hardware Parameters

Tune vector units, caches, 

and on-chip vector parallelism

Algorithmic Optimizations

Utilize the vector units and 

vector registers effectively

Lack of dual approach has the risk 
of missing important insights



6

Experimental Setup
• Network models:

• YOLOv3: 75 convolutional layers out of 107.
• VGG16: 13 convolutional layers out of 16
• Implemented in Darknet framework

• Algorithmic implementation
• NNPACK library for Winograd implementation

• Hardware Exploration:
• RISC-V Vector Extension: Gem5 Simulator* 

• Compiler
• RISC-V LLVM/Clang toolchain from the European Processor Initiative (EPI)

*Gem5 Simulator – plctlab. 2022. plct-gem5 (https://github.com/plctlab/plct-gem5/), supports v1.0 “V” extension with max VL of 4096 bits 

https://github.com/plctlab/plct-gem5/


7

Winograd: Algorithmic Optimizations
Transformations:

• 8x8 tile from one channel (NNPACK)
• Inter-tile Parallelism across the channels**
• Similarly, 32 channels to utilize 4096-bit VL

 

1 row of 8x8 tile from 4 channels

Tuple multiplication
• Increase tuple size from 3 to 32 with 4 elements in 

each block to utilize longer vector length.
 F(6x6,3x3) -> m+r-1 x m+r-1 tile 
[m= output, r =kernel]
6x6 output and 3x3 kernel size = 8x8 Tile

**Sonia Rani Gupta, Nikela Papadopoulou, and Miquel Pericas. 2023. Accelerating CNN 
inference on long vector architectures via co-design. In 2023 IEEE International Parallel 
and Distributed Processing Symposium (IPDPS). IEEE, 145–155.



8

Challenge #1: Tuple Multiplication
• Operation: Load Quadword elements 

in a vector and replicate:
• No specialized RISC-VV Instruction

• We test two alternatives
• Implementation 1: Indexed  Load
• Implementation 2: Slideup instructions

Implementation 1

Implementation 2

Quadword elements

Implementation 2 with slideup is ~2.3X faster than 
implementation 1 with indexed load.

Having specialized instruction likely to be faster, 
and reduce register pressure.  



9

Challenge #2: Transformations – 
Transpose four vectors

Potential RISC-VV extension: vector transpose of 4 vectors, eliminates need for extra memory operations

• Operation: Transpose of 4 vectors in all 
transformations

• Again, no RISC-VV instruction is available.
• EPI custom extension provides transpose with 

2 vectors. 
• We tested two alternatives:

● Implementation 1: unit-strided store followed by 
Indexed load

● Implementation 2: Strided store followed by unit-
strided load

No significant difference in performance with both implementations

Example for transposing 4 vector registers having elements 
from 1 channel



10

Challenge #3: Transformations - 
Calling Conventions

Problem: Cannot pass references to vector registers as parameters to a procedure
• require intermediate vector registers to store the intermediate vector data. 
• ~30 lines of code at 6 places in the input transformation kernel. Problems:

• Register spilling 
• Less Programmability

• Potential Workaround: Macros can improve programmability, but it will still be required 
to have intermediate registers. Problem of register spilling will remain*

Being able to pass references to vector registers would improve programmability 
and reduces the chances of register spilling

*As the extended need for intermediate registers can still cause register spilling 



VGG16: Analysis

11

VGG16: 
• 3x3 kernel size with stride 1: Winograd
• All the layers use Winograd algorithmic optimizations

Comparison with im2col+GEMM:
● 2048 bits VL and an L2 cache of 1MB modeled with gem5
● 1.2x performance improvement Compared to the pure im2col+GEMM approach.
● Similar performance compared to our optimized ARM-SVE implementation (on gem5) 



HW Design Space: VGG16

12

Impact of Vector lengths:
• No scalability beyond 2048-bit. 
• No significant difference in the 

number of instructions from 2048-bit
to 4096-bit vector lengths

Impact of L2 caches from 1MB to 64MB:
• ~1.3X performance improvement

No performance improvement beyond 
64MB L2 cache

Our Winograd implementation does not have a high cache 
requirement. 2K vector length with 64MB caches can provide 

up to ~1.8x speedup

Impact of vector lengths and L2 cache size with Winograd on RISC-
VV@gem5 for VGG16.

~1.4X



YOLOv3: Analysis

Comparison with im2col+GEMM: 
● First 20 layers with 2048 bits VL and an L2 cache of 1MB modeled with gem5
● 8% performance improvement compared to the pure im2col+GEMM approach.
● Similar performance compared to our optimized ARM-SVE implementation (on gem5)  

13

YOLOv3: Hybrid approach
• 1x1 kernel size: im2col+gemm
• 3x3 kernel size with stride 1: Winograd
• 3x3 kernel size with stride 2: im2col+gemm
• Only 5 layers use Winograd out of 20 layers.



HW Design Space: YOLOv3 Hybrid

14

~1.76X

Impact of L2 caches from 1MB 
to 256MB:
• Upto 1024-bit: 1.5X
• Beyond 2048-bit: ~1.6X

Impact of vector lengths and L2 cache size with Winograd on RISC-
VV@gem5 for YOLOv3 (20 Layers)

4K vector length with 256MB can provide up to ~2.6x 
speedup. This is mainly due to im2col+GEMM scaling



15

Discussion on tools
Gem5@ RISC-V (https://github.com/plctlab/plct-gem5/): Tightly Integrated VPU 
• Supports v1.0 Vector extension
• Very long vector lengths beyond 4096-bit are not supported yet.  
• No out of order model or prefetching support
• Models a constant latency for all the vector instructions.  In practice, the latency of the instructions will 

depend on the implementation of RISCV-V. 
**Gem5@RISC-V: Decoupled VPU with maximum of 8 vector lanes. 
• No Prefetching support and no out of order model
• Supports 16384bit VL
• No longer maintained
• Supported 0.7 RISC-V Vector extension 
SPIKE:
• Emulator with 4096-bit VL (used mainly for validation in our work)

**C. Ramírez, “A risc-v simulator and benchmark suite for designing and evaluating vector architectures,” ACM 
Trans. Archit. Code Optim., vol. 17, no. 4, Nov. 2020. [Online]

https://github.com/plctlab/plct-gem5/


16

Conclusion
Goal: Design Space Exploration of RISC-VV by studying combined implications of 
algorithmic optimizations and HW parameters tuning with Winograd algorithm for CNN

Conclusions:

• We identified several potential extensions to RISC-VV: LoadQuadword+replicate, 
Transpose of four vectors, and passing references to vector registers. 

• We implemented alternatives for this limitations. Final performance was similar to ARM-
SVE, demonstrating the performance of the proposed workarounds. 

• Hardware DSE on top of optimized kernels: ~2.6X speedup for YOLOv3 and 1.8X for 
VGG16

• Winograd implementation scales up to 2K VL and 64MB of L2 cache. On the other hand 
im2col+GEMM has higher memory requirements, but also scales to longer VL.

• Future Work: extend the study to compare with Long Vector Direct Convolutions 



11/29/2023 17

Thank you


	Challenges and Opportunities in the Co-design of Convolutions 
	Motivation
	Background: CNN inference
	Objective
	Objective (2)
	Experimental Setup
	Winograd: Algorithmic Optimizations
	Tuple Multiplication: Algorithmic Optimization
	Transformations: Algorithmic Optimizations
	Transformation: Algorithmic Optimization
	VGG16: Analysis
	Slide39
	YOLOV3: Analysis
	Hardware parameters: YOLOV3 Hybrid approach
	Discussion on tools
	Conclusion
	Thank you

