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1.1- Context: Vector computing in HPC

- Most modern architectures have SIMD extensions:
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1.2- Context: Long Vector Lengths (VL)

SSE, NEON: 128b |l
AvX2: 256b [
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Short VL Long VL

- Cannot afford (area, power, cost) hundreds of Functional Units
- Vector instructions are executed on multiple cycles

- As many Functional Units as VL.
- Vector instructions executed in 1 cycle
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1.2- Context: Long Vector Lengths (VL)

Why do we design VPUs with VL > Num. Functional Units?

Reduce the number of instructions Instantiate more work with fewer instructions
- Fewer arith/mem instructions (vectorized) - Reduce pressure on CPU front-end.
- Fewer loop control instructions (removed) - More resistance to stalls (e.g. branch miss predictions).

In this paper we focus on...

Mitigating memory latency



2.1- Long vectors hldmg memory latency

e

- Basic loop structure —— fori-o8 {[ LOADIi] }»[ ARITH ]}

- Simple scalar pipeline: RO RS IEN

- Pipeline stalls /
- Pay all the latencies .I _ﬁiﬁﬁﬁﬁﬁﬁﬁﬁﬁ, II l

- Long vector pipeline MEMORY SUBSYSTEM

- Send request after request / / / / / / / /

- Overlap latencies




2.2- Long vectors are hungry for bandwidth

CACHE
L 64 64 . 64 ,, 64 |

. RV 2
Posooooooe §\ Word selector
; 64

b

- Normally, the CPU<— CACHE bus is 64B wide.
- But cache is indexed at line granularity.
- 8 consecutive accesses—= 8 petitions (to 2 lines)
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- Vector memory instructions generate dozens of

consecutive accesses.
- Making the CPU <— CACHE bus wider reduces the

amount of required petitions (e.g. from 8 to 2)
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2.3- Experimental results of long vectors

scalar load - - vector load —+
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_____________ Vector length (64bit elements) {1 Vector length (64bit elements)
Instructions with higher VL take longer to execute... ... But are more efficient on a per-element basis!
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[1] Francesco Minervini et al. 2023. Vitruvius+: An Area-Efficient RISC-V Decoupled Vector Coprocessor for High Performance Computing Applications. ACM
Transactions on Architecture and Code Optimization 20, 2 (2023), 1-25.

[2] Mate KovaC et al. 2023. FAUST: design and implementation of a pipelined RISC-V vector floating-point unit. Microprocessors and Microsystems (2023), 104762
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3- Experimental Setup: Software Development Vehicles

- In BSC we have a cluster of FPGA-based Software Development Vehicles (FPGA-SDV) [3] nodes:
- EPAC/VECRTL (CPU, VPU, L2HN, NoC) mapped into an FPGA, running at 50MHz.

- Full HPC software stack, NFS, performance analysis — Perfect environment for HW-SW codesign.

VCU128 development board

VU37P FPGA PCle  |ercle
8 N
& TCP/IP
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[3] Filippo Mantovani et al. (2023, May). Software Development Vehicles to enable extended and early co-design: a RISC-V and HPC case of study. In
International Conference on High Performance Computing (pp. 526-537). Cham: Springer Nature Switzerland.



3- Experimental Setup

- The FPGA environment allows to easily change hardware parameters:

T ~ Max. Vector-Length Gemidynamics

Latency Controller | T ~ Bandwidth Limiter

Custom CSR
- Can be changed on runtime
- Same binary, different max VL
- Study the effect that a
smaller VPU would have

Hardware module:
- Throttle memory bandwidth
- Can be changed on runtime
- Generate fake contention

Hardware module:
- Artificially add memory latency.
- Can be changed on runtime
- Emulate a slower memory
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4- Codes selected for the evaluation

- Four in-house vectorized kernels targeting RVV:

- SpMVI[4]: Sparse matrix-vector multiplication — Used in HPCG (Top500)

- BFS[5]: Breadth-First-Search Building block of many graph algorithms
- PR[5]: Page-Rank ~ Used by Google to rank webpages
- FFT[6]: Fast Fourier Transform ~ Many scientific applications

- The inputs have been selected as to exceed the caches capacities.

[4] Constantino Gomez Crespo, et.al. 2020. Optimizing sparse matrix-vector multiplication in NEC SX-Aurora vector engine. (2020).
[5] Pablo Vizcaino. 2023. Implementing and evaluating graph algorithms for long vector architectures. Master’s thesis. Universitat Politécnica de Catalunya.

[6] Pablo Vizcaino et al. 2022. Acceleration with long vector architectures: Implementation and evaluation of the FFT kernel on NEC SX-Aurora and RISC-V vector
extension. Concurrency and Computation: Practice and Experience (2022), e7424.
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5- Adding latency
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5- Adding latency (Relative slowdown)
SpMV BFS

_________________________________________
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Observations
320123 1.19 120 117 112 1.08 1.07

64 | 147 137 137 133 132 127 1.19
128 1 198 1.90 1.78 1.72 165 1.59 1.43

- Execution time normalized
256 | 2.94 2.53 253 244 238 219 1.97 |

to 0 added latency for each
VL (slowdown)

Extra latency

512 | 490 4.27 406 3.94 389 359 3.20
768 | 6.83 5.72 556 597 520 4.84 4.50
1024 | 880 7.23 747 6.76 6.73 6.24 6.03
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- Greener is better

- Added latency slows us
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- m » VL mitigates it
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6- Throttling bandwidth

exec time wrto. 1 B/c

exec time wrto. 1 B/c
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Observations

- Execution time normalized

for each VL to BW=1B/c

- Lower is better

- Scalar plateaus early (2B/c)

- Long VL takes advantage of

higher bandwidths
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7- Conclusions

Our short reasons for long vectors:

- Vectorized implementations are less impaired by memory latency than their scalar counterparts.
- The latency mitigation is stronger the longer the vector length is.
- Vector architectures benefit from high bandwidth systems without needing to increase the core count.

The SDV methodology:

- Is effective to rapidly test these arguments.
- It allows to test complex workloads and see the effect of vectorization on them.

In the future we will:

- Expand this study to other applications.
- Study the combined effects of multicore+vector.
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