
Short reasons for long vectors in HPC CPUs

A study based on RISC-V

Pablo Vizcaino, Giorgos Ieronymakis, Nikolaos Dimou, Vassilis Papaefstathiou, Jesus Labarta, Filippo Mantovani

13/11/23 1

Implementation-defined max VLISA-defined max VL

 Runtime
 Variable VL

1.1- Context: Vector computing in HPC

· Most modern architectures have SIMD extensions:

2

128b

NEON

16384b

NEC-VE

[128b → *]

RVV

Scalar processor SIMD (e.g., AVX2) Variable VL (e.g., RVV)

128b

SSE

256b

AVX2

512b

AVX512

[128b→2048b]

SVE

1.2- Context: Long Vector Lengths (VL)

 SSE, NEON: 128b

AVX2: 256b

AVX512: 512b

SVE: 2048b

NEC, RVV: 16384b

- As many Functional Units as VL.
- Vector instructions executed in 1 cycle

Short VL

- Cannot afford (area, power, cost) hundreds of Functional Units
- Vector instructions are executed on multiple cycles

Long VL

3

1.2- Context: Long Vector Lengths (VL)

Why do we design VPUs with VL > Num. Functional Units?

Reduce the number of instructions

- Fewer arith/mem instructions (vectorized)

- Fewer loop control instructions (removed)

Instantiate more work with fewer instructions

- Reduce pressure on CPU front-end.

- More resistance to stalls (e.g. branch miss predictions).

Mitigating memory latency

4

In this paper we focus on…

2.1- Long vectors hiding memory latency

· Basic loop structure

· Simple scalar pipeline:

- Pipeline stalls

- Pay all the latencies

· Long vector pipeline

- Send request after request

- Overlap latencies

5

2.2- Long vectors are hungry for bandwidth

· Vector memory instructions generate dozens of
consecutive accesses.
· Making the CPU CACHE bus wider reduces the
amount of required petitions (e.g. from 8 to 2)

· Normally, the CPU CACHE bus is 64B wide.
· But cache is indexed at line granularity.
· 8 consecutive accesses 8 petitions (to 2 lines)

6

2.3- Experimental results of long vectors

Instructions with higher VL take longer to execute… … But are more efficient on a per-element basis!

7

3- Experimental Setup

· European Processor Initiative (EPI)
 - European Processor Accelerator (EPAC)
 - RISC-V based
 - VEC, STX, VRP, …

8

- In-order.

- Implements the rvv0.7 extension

- 32KB data cache

- Gazillion™ misses

- 16384 bits per register

- Implements the rvv0.7 extension

- 8 Lanes 16Flop/cycle

- FPU [2]

[1] Francesco Minervini et al. 2023. Vitruvius+: An Area-Efficient RISC-V Decoupled Vector Coprocessor for High Performance Computing Applications. ACM
Transactions on Architecture and Code Optimization 20, 2 (2023), 1–25.

[2] Mate Kovač et al. 2023. FAUST: design and implementation of a pipelined RISC-V vector floating-point unit. Microprocessors and Microsystems (2023), 104762

- 4 Homenodes of 256KB 1MB L2

- MESI-based coherence

Avispado (CPU) Vitruvius [1] (VPU) L2 Homenode

Network On Chip (NoC)

Test-chip available at:BSC booth - #1269EPI booth - #213

3- Experimental Setup: Software Development Vehicles

· In BSC we have a cluster of FPGA-based Software Development Vehicles (FPGA-SDV) [3] nodes:

- EPAC/VEC RTL (CPU, VPU, L2HN, NoC) mapped into an FPGA, running at 50MHz.

- Full HPC software stack, NFS, performance analysis Perfect environment for HW-SW codesign.

[3] Filippo Mantovani et al. (2023, May). Software Development Vehicles to enable extended and early co-design: a RISC-V and HPC case of study. In
International Conference on High Performance Computing (pp. 526-537). Cham: Springer Nature Switzerland.

9

Custom CSR
 - Can be changed on runtime
 - Same binary, different max VL
 - Study the effect that a
 smaller VPU would have

Hardware module:
 - Artificially add memory latency.
 - Can be changed on runtime
 - Emulate a slower memory

Hardware module:
 - Throttle memory bandwidth
 - Can be changed on runtime
 - Generate fake contention

· The FPGA environment allows to easily change hardware parameters:

Latency Controller

3- Experimental Setup

Bandwidth Limiter Max. Vector-Length

10

4- Codes selected for the evaluation

· Four in-house vectorized kernels targeting RVV:

- SpMV[4]: Sparse matrix-vector multiplication
- BFS[5]: Breadth-First-Search
- PR[5]: Page-Rank
- FFT[6]: Fast Fourier Transform

· The inputs have been selected as to exceed the caches capacities.

[4] Constantino Gómez Crespo, et.al. 2020. Optimizing sparse matrix-vector multiplication in NEC SX-Aurora vector engine. (2020).

[5] Pablo Vizcaino. 2023. Implementing and evaluating graph algorithms for long vector architectures. Master’s thesis. Universitat Politècnica de Catalunya.

[6] Pablo Vizcaino et al. 2022. Acceleration with long vector architectures: Implementation and evaluation of the FFT kernel on NEC SX-Aurora and RISC-V vector
extension. Concurrency and Computation: Practice and Experience (2022), e7424.

Used in HPCG (Top500)
Building block of many graph algorithms
Used by Google to rank webpages
Many scientific applications

11

5- Adding latency
SpMV BFS

PR FFT

- Execution time depending
on VL and extra latency

- Lower is better

- The four codes benefit
from long VLs

- Long VL present flatter
curves: latency resistance

Observations

12

5- Adding latency (Relative slowdown)
SpMV BFS

PR FFT

- Execution time normalized
to 0 added latency for each
VL (slowdown)

- Greener is better

- Added latency slows us

- VL mitigates it

Observations

13

6- Throttling bandwidth
SpMV BFS

PR FFT

- Execution time normalized
for each VL to BW=1B/c

- Lower is better

- Scalar plateaus early (2B/c)

- Long VL takes advantage of
higher bandwidths

Observations

14

7- Conclusions

Our short reasons for long vectors:

- Vectorized implementations are less impaired by memory latency than their scalar counterparts.
- The latency mitigation is stronger the longer the vector length is.
- Vector architectures benefit from high bandwidth systems without needing to increase the core count.

The SDV methodology:

- Is effective to rapidly test these arguments.
- It allows to test complex workloads and see the effect of vectorization on them.

In the future we will:

- Expand this study to other applications.
- Study the combined effects of multicore+vector.

15

Acknowledgment

This research has received funding from the European
High Performance Computing Joint Undertaking (JU) under
Framework Partnership Agreement No 800928 (European
Processor Initiative) and Specific Grant Agreement No
101036168 (EPI SGA2). The JU receives support from the
European Union’s Horizon 2020 research and innovation
programme and from Croatia, France, Germany, Greece,
Italy, Netherlands, Portugal, Spain, Sweden, and
Switzerland. The EPI-SGA2 project, PCI2022-132935 is also
co-funded by MCIN/AEI /10.13039/501100011033 and by
the UE NextGenerationEU/PRTR.

We thankfully acknowledge the support of the European
Commission via the Horizon Europe research and innovation
funding programme, under grant agreement 101092993
(RISER).

16

Contact me: pablo.vizcaino@bsc.es
Visit me: BSC booth (#1269) or EPI booth (#213)

