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1.1- Context: Vector computing in HPC

· Most modern architectures have SIMD extensions:
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1.2- Context: Long Vector Lengths (VL)

 SSE, NEON: 128b

AVX2: 256b

AVX512: 512b

SVE: 2048b

NEC, RVV: 16384b

- As many Functional Units as VL.
- Vector instructions executed in 1 cycle

Short VL

- Cannot afford (area, power, cost) hundreds of Functional Units
- Vector instructions are executed on multiple cycles

Long VL
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1.2- Context: Long Vector Lengths (VL)

Why do we design VPUs with VL  > Num. Functional Units?

Reduce the number of instructions

- Fewer arith/mem instructions (vectorized)

- Fewer loop control instructions (removed)

Instantiate more work with fewer instructions

- Reduce pressure on CPU front-end.

- More resistance to stalls (e.g. branch miss predictions).

Mitigating memory latency
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In this paper we focus on…



2.1- Long vectors hiding memory latency

· Basic loop structure

· Simple scalar pipeline:

- Pipeline stalls

- Pay all the latencies

· Long vector pipeline

- Send request after request

- Overlap latencies

5



2.2- Long vectors are hungry for bandwidth

 

· Vector memory instructions generate dozens of 
consecutive accesses.
· Making the CPU         CACHE bus wider reduces the 
amount of required petitions (e.g. from 8 to 2)

· Normally, the CPU         CACHE bus is 64B wide.
· But cache is indexed at line granularity.
· 8 consecutive accesses         8 petitions (to 2 lines)
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2.3- Experimental results of long vectors

 

Instructions with higher VL take longer to execute… … But are more efficient on a per-element basis!
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3- Experimental Setup

· European Processor Initiative (EPI)
    - European Processor Accelerator (EPAC) 
        - RISC-V based
        - VEC, STX, VRP, …
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- In-order.

- Implements the rvv0.7 extension

- 32KB data cache

- Gazillion™ misses

- 16384 bits per register

- Implements the rvv0.7 extension

- 8 Lanes    16Flop/cycle

- FPU [2]

[1] Francesco Minervini et al. 2023. Vitruvius+: An Area-Efficient RISC-V Decoupled Vector Coprocessor for High Performance Computing Applications. ACM 
Transactions on Architecture and Code Optimization 20, 2 (2023), 1–25.

[2] Mate Kovač et al. 2023. FAUST: design and implementation of a pipelined RISC-V vector floating-point unit. Microprocessors and Microsystems (2023), 104762

- 4 Homenodes of 256KB       1MB L2

- MESI-based coherence

Avispado (CPU) Vitruvius [1] (VPU) L2 Homenode

Network On Chip (NoC)

Test-chip available at:BSC booth - #1269EPI booth - #213



3- Experimental Setup: Software Development Vehicles

· In BSC we have a cluster of FPGA-based Software Development Vehicles (FPGA-SDV) [3] nodes:

- EPAC/VEC RTL (CPU, VPU, L2HN, NoC) mapped into an FPGA, running at 50MHz.

- Full HPC software stack, NFS, performance analysis               Perfect environment for HW-SW codesign.

[3] Filippo Mantovani et al. (2023, May). Software Development Vehicles to enable extended and early co-design: a RISC-V and HPC case of study. In 
International Conference on High Performance Computing (pp. 526-537). Cham: Springer Nature Switzerland.
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Custom CSR
    - Can be changed on runtime
    - Same binary, different max VL 
    - Study the effect that a 
      smaller VPU would have

Hardware module:
    - Artificially add memory latency.
    - Can be changed on runtime
    - Emulate a slower memory 

Hardware module:
    - Throttle memory bandwidth
    - Can be changed on runtime
    - Generate fake contention

· The FPGA environment allows to easily change hardware parameters:

Latency Controller

3- Experimental Setup

Bandwidth Limiter Max. Vector-Length
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4- Codes selected for the evaluation

· Four in-house vectorized kernels targeting RVV:

- SpMV[4]: Sparse matrix-vector multiplication
- BFS[5]: Breadth-First-Search 
- PR[5]: Page-Rank
- FFT[6]: Fast Fourier Transform

· The inputs have been selected as to exceed the caches capacities.

[4] Constantino Gómez Crespo, et.al. 2020. Optimizing sparse matrix-vector multiplication in NEC SX-Aurora vector engine. (2020).

[5] Pablo Vizcaino. 2023. Implementing and evaluating graph algorithms for long vector architectures. Master’s thesis. Universitat Politècnica de Catalunya.

[6] Pablo Vizcaino et al. 2022. Acceleration with long vector architectures: Implementation and evaluation of the FFT kernel on NEC SX-Aurora and RISC-V vector 
extension. Concurrency and Computation: Practice and Experience (2022), e7424.

Used in HPCG (Top500)
Building block of many graph algorithms
Used by Google to rank webpages
Many scientific applications
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5- Adding latency
SpMV BFS

PR FFT

-  Execution time depending 
on VL and extra latency

- Lower is better

- The four codes benefit 
from long VLs

- Long VL present flatter 
curves: latency resistance

Observations
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5- Adding latency (Relative slowdown)
SpMV BFS

PR FFT

- Execution time normalized 
to 0 added latency for each 
VL (slowdown)

- Greener is better

-        Added latency slows us

-        VL mitigates it

Observations
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6- Throttling bandwidth
SpMV BFS

PR FFT

- Execution time normalized 
for each VL to BW=1B/c

- Lower is better

- Scalar plateaus early (2B/c)

- Long VL takes advantage of 
higher bandwidths

Observations
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7- Conclusions

 
Our short reasons for long vectors:

- Vectorized implementations are less impaired by memory latency than their scalar counterparts.
- The latency mitigation is stronger the longer the vector length is.
- Vector architectures benefit from high bandwidth systems without needing to increase the core count. 

The SDV methodology:

- Is effective to rapidly test these arguments.
- It allows to test complex workloads and see the effect of vectorization on them.

In the future we will:

- Expand this study to other applications.
- Study the combined effects of multicore+vector.
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