# InspireSemi™

Disruptive Next Generation Accelerated Computing Platform

Blistering speed, energy efficiency, versatility, and affordability for HPC, Al and graph analytics applications

SC23 RISC-V Workshop

November 2023



# The Third Wave of Accelerated Computing is Here

Thunderbird for HPC, AI, Graph Analytics

1980 Math Coprocessor 2007 GPU, FPGA





- Purpose-built widely applicable
- Open software ecosystem
- Plugs into existing computers









• Plugs into existing servers





### Addressing the Need to Accelerate All HPC & Al Software

What customers always wanted...Not "yet another GPU"



Financial simulations



Geology: Seismic



Financial Trading & Graph Analytics



Energy: Reservoir Modeling & Sim



Genomics, Pharma, Life Sciences



CAE/Computational Fluid Dynamics



Nuclear Simulations Fission & Fusion



Climate & Weather Modeling



InspireSemi Thunderbird



Highly differentiated "supercomputer-cluster-on-a-chip"

- Versatility as a platform across wide range of applications
- Each chip has 1,792 CPU cores connected via high-speed network
- 4 chip PCIe card delivers >7,000 interconnected 64-bit CPU cores
- Large scale computing power, supports up to 256 chips
- Best-in-class for both Performance/\$ and Performance/Watt
- Delivers unprecedented capability within an established open software ecosystem



## **Thunderbird Addresses Key Industry Pain Points**

- Customers excited about key Thunderbird architectural advantages vs. competition
  - Greater utilization and real-world application performance
  - Predictable performance, known timing behavior
  - Lower power consumption
- Determinism: Thunderbird addresses applications where GPUs do not work
  - FinTech customer "ah-ha moment" insight Latency, MIMD vs. SIMD
  - Repeatability of results is a must for many key applications: high-frequency trading, cryptography, healthcare imaging, smart weapons, self-driving cars, ...

#### <u>Latency example - Thunderbird (MIMD) vs. leading GPU (SIMD)</u>









### Thunderbird Addresses ALL HPC & Al Customer Needs

|                       | InspireSemi<br>Thunderbird                                                     | CPU                                                    | GPU                                            | FPGA                                | Al Accelerators                               |
|-----------------------|--------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------|-------------------------------------|-----------------------------------------------|
| Architecture          | Many programs,<br>many data streams                                            | Few programs,<br>few data streams                      | Few programs,<br>many data streams             | Programmable logic elements         | Single program,<br>many data streams          |
| Performance           | High for broad range of HPC apps                                               | Slow, need h/w accelerators                            | High for AI and some HPC apps                  | Medium                              | High for AI only                              |
| Cost                  | Low \$6,500<br>for 2 chip PCIe card                                            | High ~\$1K-8K<br>(+ more servers)                      | High ~\$7K-48K                                 | High \$8K-\$10K                     | High ~\$10K - \$2.2M                          |
| Energy consumption    | Low ~150W/chip                                                                 | Med 240W+/chip<br>(+ more servers)                     | High ~700W                                     | High ~300W                          | High ~300W - 20kW                             |
| Scalability           | 256 chips                                                                      | 1-4 chips                                              | 2-8 chips                                      | 1 chip                              | 1-2 chips                                     |
| Programming model     | Standard CPU-like,<br>Any language,<br>Full instruction set                    | Standard CPU,<br>Any language,<br>Full instruction set | Specialized C<br>variant (CUDA,<br>ROCM, SYCL) | Hardware<br>description<br>language | Proprietary, obscure                          |
| Software<br>ecosystem | Open-source, Linux, compilers, libraries, Al frameworks, existing applications | Robust                                                 | Limited, proprietary                           | None                                | Al frameworks and proprietary software stacks |

