Streamlining Fedora Linux Distributions for
RISC-V: A Scalable and Automated Approach

Surendra Billa, Arif Badar, Rushikesh Jadhav,
Yogeshwar Sonawane, Sanjay Wandhekar
C-DAC, Pune, India

NN ([

[\ N
Isc International Workshop on RISC-V for HPC at ISC

High Performance June 13, 2025

Outline

* Introduction

* Motivation

* Technical Background

* Proposed Architecture

* Development Approach

* Results & Performance Analysis
* Conclusion

* Future Work

Introduction

* RISC-V ISA: A Game Changer

* Open-source and modular by design, RISC-V enables customizable, cost-
effective processor development.

 Suited for a wide range of systems: from embedded devices to HPC servers.

* The Challenge: Software Ecosystem Gaps
* Major Linux distributions (e.g., Debian, Fedora, Ubuntu) target general-
purpose RV64GC systems.

* Custom hardware configurations, especially those using minimal RISC-V
extensions like RV64G, lack upstream support.

Motivation

* Enable Broader RISC-V Adoption

* Lightweight RISC-V designs help meet cost and complexity constraints ideal
for academia, startups, and research.

* However, absence of tailored Linux distributions limits usability and
experimentation.

* Limitations of Existing Build Systems

e Buildroot and Yocto are for custom embedded systems: They create minimal,
hardware-specific Linux images. Buildroot produces static images and Yocto
has limited support for package managers.

e Standard distributions like Debian and Fedora : They offer full-featured
package management(like dnf or apt) with access to large official repositories.

Technical Background

Conferences = SC24-W: Workshops of the Inte... @

: Development of Fedora Linux Distribution for RISC-V (RV64G) Architecture
Our prior work on RV64G Fedora =™ 'me

L]
PO rt o Surendra Billa ; Arif Badar ; Rushikesh Jadhav ; Yogeshwar Sonawane ; Sanjay Wandhekar All Authors

121
Full Q < © A

Text Views

. Abstract Abstract:
® P re S e n te d a n d p u b I I S h e d O u r WO r k The rapid evolution of the RISC-V architecture presents both opportunities and challenges, particularly for systems lacking
Document Sections support for compressed instructions (RVE4G). This paper explores the development of a Fedora Linux distribution tailored
t it | e d . I. Introduction specifically for the RV64G architecture, providing a comprehensive narrative of the process from inception to implementation
° Key milestones include establishing a robust filesystem hierarchy, creating a cross-compiler, preparing and bootstrapping
II. Related Work target image, integrating a native GCC compiler, and leveraging the Koji build system to streamline package re-building.

n H
D eve o m e nt o Fe o ra LI n u x . Additionally, we infroduce a custom Python application to automate the Koji builds, enhancing efficiency and consistency. Our
Il Implementation

innovative approach not only addresses the immediate needs of RV64G systems but also lays the groundwork for future

D i st ri b u t i O n fo r R I S C_V (RV64G) IV. Results and Testing advancements in High-Performance Computing (HPC) on the RISC-V platform. This work aims to bridge the gap in the current

Summary ecosystem, offering a scalable and maintainable solution that promotes the broader adoption of RISC-V technology [1].

Architecture” o

Published in: SC24-W: Workshops of the International Conference for High Performance Computing, Networking, Storage
Show Full Outline

and Analysis
Authors

Date of Conference: 17-22 November 2024 DOI: 10.1109/SCW63240.2024.00210
Figures

Date Added to IEEE Xplore: 08 January 2025 Publisher: |[EEE
References

» ISBN Infermation: Conference Location: Atlanta, GA, USA

Keywords

Technical Background

* Prior Approach (Based on Linux From Scratch - LFS)
 Built a minimal Fedora Linux system for RV64G from source.
* Manually compiled essential packages and dependencies.

* Challenges Faced
* Involving considerable human effort and time-consuming.
* Required setup of Mock and Koji to enable package builds.
* Even with Koji, sequential package builds limited scalability.

Process Overview

Rebuilding \
build | Setting up Koji Automatin
toolchains for i frastructur

desired ISA ucture

extension set

Development Approach

Patching gcc and binutils rom package for rv64g extension set
* Updated GCC specification file

@ -1163,7 +1163,7 @@ CONFIGURE_OPTS="\

%ifarch riscve4

%endif

Development Approach

Rebuilding gcc and binutils with existing toolchain

GNU Toolchain
- target-arch = rvé4g

target-arch = rvé4gc

gcc

Development Approach

Rebuilding glibc with patched compiler and assembler

gcc

GNU Toolchain
- target-arch = rvé4g

target-arch = rvé4gc Relocatable
object files
patched with

blnutlls ~ Tvéag
instructions

Development Approach

Rebuilding gcc and binutils again with the new toolchain
éa)

gcc

gcc

target-arch = rvé4g

binutils Devoid of all
\ / compressed instructions

target-arch = rvé4g

Development Approach

Integrating rv64g toolchain in Koji repository

-

gcc

\

-

J

Build Tag

Koji Hub

External
Repo

rvé4gc
dependencies

Development Approach

Comparing compiled binaries - banner

Default GNU toolchain(rv64gc) Patched GNU toolchain (rv64g)
119 Disassembly of section .text: 119 Disassembly of section .text:
120 120
121 0066BBBBOBBB4130 <main@@Base>: 121 0000000BBBBB4136 <main@@Base>:
122 4130: 7115 c.addilésp sp,-224 122 4130: 2018113 addi sp,sp,-224
123 4132: e9a2 c.sdsp s0,208(sp) 123 4134: 8813823 sd s0,208(sp)
124 4134: elca c.sdsp s2,192(sp) 124 4138: 0d213623 sd s2,192(sp)
125 4136: 1186 c.addi4spn sB,sp,224 125 413c: 0eB10413 addi s@,sp,224
126 4138: ed86 c.sdsp ra,216(sp) 126 4148: 8c113c23 sd ra,216(sp)
127 413a: ebab c.sdsp s1,200(sp) 127 4144: 8c913423 sd s1,200(sp)
128 413c: fd4e c.sdsp s3,184(sp) 128 4148: Bh313c23 sd s3,184(sp)
129 413e: 952 c.sdsp s4,176(sp) 129 414c: Bb413823 sd s4,176(sp)
130 41408: 556 c.sdsp s5,168(sp) 138 4150: Bb513423 sd s5,168(sp)
131 4142: f15a c.sdsp s6,160(sp) 131 4154: 8b613023 sd s6,160(sp)
132 4144: edbe c.sdsp s7,152(sp) 132 4158: 89713c23 sd s7,152(sp)
133 4146: €962 c.sdsp s8,144(sp) 133 415c: 09813823 sd s8,144(sp)
134 4148: €566 c.sdsp s9,136(sp) 134 4168: 89913423 sd s9,136(sp)
135 414a: elba c.sdsp s10,128(sp) 135 4164: 89a13023 sd s108,128(sp)
136 414c: fcee c.sdsp s11,1268(sp) 136 4168: 87b13c23 sd s11,1268(sp)
137 414e: 000084717 auipc a4,0Bx4 137 416c: 00084717 auipc a4,0x4
138 I 4152: e8273703 1d a4,-382(a4) # 7fdo 138 4170: eb6473703 1d a4,-412(a4) # 7fd@

<main@@Base+Bx3ead> <mainf@@Base+Bx3ead>

139 4156: 631c c.ld ab5,0(a4) 139 4174: 0080873783 1d ab5,0(a4)
140 4158: f8f43423 sd ab5,-120(s0) 140 4178: f8f43423 sd a5,-120(s0)
141 415c: 4781 c.li ab,8 141 417c: 060668793 addi ab,zero,B
142 415e: 4785 c.d1 a5;1 142 4180: 008108793 addi ab,zero,]

Development Approach

Automating package build with Koji

Fetch package build info from upstream koji

Import packages that are machine
independent (fonts, configs, keys etc)

Get SCM URL and commit ID for regular
packages

Call build on downstream koji with the
acquired URL and commit id

Monitor build, process result and notify

START

|

Fetch package build info
from upstream koji

|

BUILDSYSTEM

YES

Is architecture agnostic ? _— Download RPMs from

upstream koji repo

lNO

Parse SCM URL and commit-id
from build info

! v

Request build on Import RPMs on
downstream koji downstream koji

|

Process result and
Notify

|

STOP

cdAC

Development Approach

Parallelizing package builds using Asyncio event loop

Task Queue
Task 1
Delegat
Task 1 Add to event e
loop
Task 1 Event Loop
Yield control

Task 1

Poll file descriptors

Execution

Development Approach

Running concurrent tasks

- Retrieve Package List

- Queue Rebuild Tasks

- Execute in Parallel

- Monitor and Notify

- Clean Up Completed Tasks
- Repeat Until Done

START

}

Fetch package list

1

Add rebuild(package) tasks to
task_queue

i YES

N\

’ \
> A Event Loop v
l

NO

\
\ /
So 7

P

!

Inspect task.result and notify build
status

v

Remove task from task_queue

{

task_queue empty?

l YES

STOP

Experimental Setup

e 4 Star Five Boards e 2 QEMU Instances
* 8 GB Ram e 32 GB Ram
e 4 Cores x 1.5 GHz e 24 core x 2.10 GHz

.::.:’] g
= Exd S §>StarFiVé’ Vistenfive 2 ‘
e BRBARYR

> % A0 guae J AL oe
a=

QREMU

Results & Performance Analysis

 Toolchain Robustness

Packages successfully compiled with GCC (RV64G) are compatible with RVv64GC
binaries via LP64D ABI.

* Package Rebuild Success

Achieved high rebuild success rates for core components and libraries using a
personal Koji build system.

* Bootability on RV64G Platforms

Verified successful boot on StarFive, Vega, and QEMU using U-Boot and GRUB
across various storage.

 System Stability

System passed stress tests and HPC benchmarks (e.g., HPL) with stable
performance and no crashes.

Results & Performance Analysis

Requires manual initiation for =~ Automatically schedules and

Build Initiation

each individual package. queues packages for building.
Build activity is limited on Operates continuously, including

Availability and Responsiveness weekends and holidays dueto weekends, thereby maximizing
lack of manual intervention. system uptime.

Supports rapid, parallel
downloads, completing the
process within seconds to a few
minutes.

Downloads are performed
Efficiency in no-arch packages individually, resulting in significant
time consumption.

Conclusion

* Modular RISC-V Support:

Successfully developed a Fedora Linux distribution tailored for the RV64G
subset, addressing key software support gaps.

 Automation & Efficiency

Integrated the Koji build system and Python-based automation tools to reduce
manual effort and enable continuous & scalable builds.

* Ecosystem Impact

Presented a reliable and open system that helps developers and improves the
RISC-V platform for many uses.

Future Work

 Extension-Based Customization

Improve the system to support RV64GC with additional extensions, enabling
custom Linux for various RISC-V application domains.

* Optimized Dependency Management

Add a better system to manage dependencies so that rebuilding packages is
faster and more reliable.

* HPC-Optimized RISC-V Server Distribution

Develop a Fedora based RISC-V server OS optimized for high-performance
computing.

Thank you!

yogeshwars@cdac.in

surendrab@cdac.in

	Slide 1: Streamlining Fedora Linux Distributions for RISC-V: A Scalable and Automated Approach
	Slide 2: Outline
	Slide 3: Introduction
	Slide 4: Motivation
	Slide 5: Technical Background
	Slide 6: Technical Background
	Slide 7: Process Overview
	Slide 8: Development Approach
	Slide 9: Development Approach
	Slide 10: Development Approach
	Slide 11: Development Approach
	Slide 12: Development Approach
	Slide 13: Development Approach
	Slide 14: Development Approach
	Slide 15: Development Approach
	Slide 16: Development Approach
	Slide 17: Experimental Setup
	Slide 18: Results & Performance Analysis
	Slide 19: Results & Performance Analysis
	Slide 20: Conclusion
	Slide 21: Future Work
	Slide 22: Thank you!

