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Introduction

• RISC-V ISA: A Game Changer
• Open-source and modular by design, RISC-V enables customizable, cost-

effective processor development.

• Suited for a wide range of systems: from embedded devices to HPC servers.

• The Challenge: Software Ecosystem Gaps
• Major Linux distributions (e.g., Debian, Fedora, Ubuntu) target general-

purpose RV64GC systems.

• Custom hardware configurations, especially those using minimal RISC-V 
extensions like RV64G, lack upstream support.



Motivation

• Enable Broader RISC-V Adoption
• Lightweight RISC-V designs help meet cost and complexity constraints ideal

for academia, startups, and research.

• However, absence of tailored Linux distributions limits usability and
experimentation.

• Limitations of Existing Build Systems
• Buildroot and Yocto are for custom embedded systems: They create minimal,

hardware-specific Linux images. Buildroot produces static images and Yocto
has limited support for package managers.

• Standard distributions like Debian and Fedora : They offer full-featured
package management(like dnf or apt) with access to large official repositories.



Technical Background

Our prior work on RV64G Fedora
Port:

• Presented and published our work 
titled:
"Development of Fedora Linux 
Distribution for RISC-V (RV64G) 
Architecture“



Technical Background

• Prior Approach (Based on Linux From Scratch - LFS)
• Built a minimal Fedora Linux system for RV64G from source.

• Manually compiled essential packages and dependencies.

• Challenges Faced
• Involving considerable human effort and time-consuming.

• Required setup of Mock and Koji to enable package builds.

• Even with Koji, sequential package builds limited scalability.



Process Overview
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Development Approach

Patching gcc and binutils rpm package for rv64g extension set
• Updated GCC specification file

@ -1163,7 +1163,7 @@ CONFIGURE_OPTS="\

%ifarch riscv64
- —with-arch=rv64gc --with-abi=lp64d --with-multilib-list=lp64d \
+ —with-arch=rv64g --with-abi=lp64d —-with-multilib-list=lp64d \

%endif



Development Approach 
Rebuilding gcc and binutils with existing toolchain 
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Development Approach 
Rebuilding glibc with patched compiler and assembler
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Development Approach 
Rebuilding gcc and binutils again with the new toolchain
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Development Approach 
Integrating rv64g toolchain in Koji repository
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Development Approach 
Comparing compiled binaries - banner



Development Approach 
Automating package build with Koji
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-    Fetch package build info from upstream koji

- Import packages that are machine 
independent (fonts, configs, keys etc)

- Get SCM URL and commit ID for regular 
packages
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Development Approach 
Parallelizing package builds using Asyncio event loop

Event Loop
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Development Approach 
Running concurrent tasks 

- Retrieve Package List

- Queue Rebuild Tasks

- Execute in Parallel

- Monitor and Notify

- Clean Up Completed Tasks

- Repeat Until Done
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Experimental Setup

• 4 Star Five Boards 

• 8 GB Ram

• 4 Cores x 1.5 GHz

• 2 QEMU Instances

• 32 GB Ram

• 24 core x 2.10 GHz



Results & Performance Analysis

• Toolchain Robustness
Packages successfully compiled with GCC (RV64G) are compatible with RV64GC 
binaries via LP64D ABI.

• Package Rebuild Success
Achieved high rebuild success rates for core components and libraries using a 
personal Koji build system.

• Bootability on RV64G Platforms
Verified successful boot on StarFive, Vega, and QEMU using U-Boot and GRUB 
across various storage.

• System Stability
System passed stress tests and HPC benchmarks (e.g., HPL) with stable 
performance and no crashes.



Results & Performance Analysis

Evaluation Criteria Manual approach Automation Framework

Build Initiation Requires manual initiation for 
each individual package.

Automatically schedules and 
queues packages for building.

Availability and Responsiveness
Build activity is limited on 
weekends and holidays due to 
lack of manual intervention.

Operates continuously, including 
weekends, thereby maximizing 
system uptime.

Efficiency in no-arch packages
Downloads are performed 
individually, resulting in significant 
time consumption.

Supports rapid, parallel 
downloads, completing the 
process within seconds to a few 
minutes.



Conclusion

• Modular RISC-V Support:
Successfully developed a Fedora Linux distribution tailored for the RV64G 
subset, addressing key software support gaps.

• Automation & Efficiency
Integrated the Koji build system and Python-based automation tools to reduce 
manual effort and enable continuous & scalable builds.

• Ecosystem Impact
Presented a reliable and open system that helps developers and improves the 
RISC-V platform for many uses.



Future Work

• Extension-Based Customization
Improve the system to support RV64GC with additional extensions, enabling 
custom Linux for various RISC-V application domains.

• Optimized Dependency Management
Add a better system to manage dependencies so that rebuilding packages is 
faster and more reliable.

• HPC-Optimized RISC-V Server Distribution
Develop a Fedora based RISC-V server OS optimized for high-performance 
computing.



Thank you!

yogeshwars@cdac.in

surendrab@cdac.in 
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