
Streamlining Fedora Linux Distributions for
RISC-V: A Scalable and Automated Approach

Surendra Billa, Arif Badar, Rushikesh Jadhav,

Yogeshwar Sonawane, Sanjay Wandhekar

C-DAC, Pune, India

International Workshop on RISC-V for HPC at ISC

June 13, 2025

Outline

• Introduction

• Motivation

• Technical Background

• Proposed Architecture

• Development Approach

• Results & Performance Analysis

• Conclusion

• Future Work

Introduction

• RISC-V ISA: A Game Changer
• Open-source and modular by design, RISC-V enables customizable, cost-

effective processor development.

• Suited for a wide range of systems: from embedded devices to HPC servers.

• The Challenge: Software Ecosystem Gaps
• Major Linux distributions (e.g., Debian, Fedora, Ubuntu) target general-

purpose RV64GC systems.

• Custom hardware configurations, especially those using minimal RISC-V
extensions like RV64G, lack upstream support.

Motivation

• Enable Broader RISC-V Adoption
• Lightweight RISC-V designs help meet cost and complexity constraints ideal

for academia, startups, and research.

• However, absence of tailored Linux distributions limits usability and
experimentation.

• Limitations of Existing Build Systems
• Buildroot and Yocto are for custom embedded systems: They create minimal,

hardware-specific Linux images. Buildroot produces static images and Yocto
has limited support for package managers.

• Standard distributions like Debian and Fedora : They offer full-featured
package management(like dnf or apt) with access to large official repositories.

Technical Background

Our prior work on RV64G Fedora
Port:

• Presented and published our work
titled:
"Development of Fedora Linux
Distribution for RISC-V (RV64G)
Architecture“

Technical Background

• Prior Approach (Based on Linux From Scratch - LFS)
• Built a minimal Fedora Linux system for RV64G from source.

• Manually compiled essential packages and dependencies.

• Challenges Faced
• Involving considerable human effort and time-consuming.

• Required setup of Mock and Koji to enable package builds.

• Even with Koji, sequential package builds limited scalability.

Process Overview

Setting up Koji

infrastructure

Rebuilding

build

toolchains for

desired ISA

extension set

Automating

builds

with Koji

Development Approach

Patching gcc and binutils rpm package for rv64g extension set
• Updated GCC specification file

@ -1163,7 +1163,7 @@ CONFIGURE_OPTS="\

%ifarch riscv64
- —with-arch=rv64gc --with-abi=lp64d --with-multilib-list=lp64d \
+ —with-arch=rv64g --with-abi=lp64d —-with-multilib-list=lp64d \

%endif

Development Approach
Rebuilding gcc and binutils with existing toolchain

GNU Toolchain

binutils

gcc

target-arch = rv64gc

target-arch = rv64g

Development Approach
Rebuilding glibc with patched compiler and assembler

GNU Toolchain

binutils

gcc

glibc
target-arch = rv64g

Relocatable
object files

patched with
rv64g

instructions

target-arch = rv64gc

Development Approach
Rebuilding gcc and binutils again with the new toolchain

binutils

gcc

glibc

binutils

gcc

target-arch = rv64g

target-arch = rv64g

Devoid of all
compressed instructions

Development Approach
Integrating rv64g toolchain in Koji repository

binutils

gcc

glibc

rust

clang

Build Tag

Repo

External

Repo

Koji Hub

rv64gc

dependencies

Development Approach
Comparing compiled binaries - banner

Development Approach
Automating package build with Koji

START

Is architecture agnostic ?
Download RPMs from

upstream koji repo

Import RPMs on

downstream koji

Parse SCM URL and commit-id

from build info

Request build on

downstream koji

STOP

NO

YES

Fetch package build info

from upstream koji

Process result and

Notify

- Fetch package build info from upstream koji

- Import packages that are machine
independent (fonts, configs, keys etc)

- Get SCM URL and commit ID for regular
packages

- Call build on downstream koji with the
acquired URL and commit id

- Monitor build, process result and notify

Development Approach
Parallelizing package builds using Asyncio event loop

Event Loop

Add to event
loop

Task Queue

Delegate

Yield control

Poll file descriptors

Task 1

Task 1

Task 1

Task 1

Execution

Development Approach
Running concurrent tasks

- Retrieve Package List

- Queue Rebuild Tasks

- Execute in Parallel

- Monitor and Notify

- Clean Up Completed Tasks

- Repeat Until Done

STOP

START

Event Loop

Add rebuild(package) tasks to

task_queue

Remove task from task_queue

task_queue empty?

NO

YES

YES

Inspect task.result and notify build

status

Fetch package list

Experimental Setup

• 4 Star Five Boards

• 8 GB Ram

• 4 Cores x 1.5 GHz

• 2 QEMU Instances

• 32 GB Ram

• 24 core x 2.10 GHz

Results & Performance Analysis

• Toolchain Robustness
Packages successfully compiled with GCC (RV64G) are compatible with RV64GC
binaries via LP64D ABI.

• Package Rebuild Success
Achieved high rebuild success rates for core components and libraries using a
personal Koji build system.

• Bootability on RV64G Platforms
Verified successful boot on StarFive, Vega, and QEMU using U-Boot and GRUB
across various storage.

• System Stability
System passed stress tests and HPC benchmarks (e.g., HPL) with stable
performance and no crashes.

Results & Performance Analysis

Evaluation Criteria Manual approach Automation Framework

Build Initiation Requires manual initiation for
each individual package.

Automatically schedules and
queues packages for building.

Availability and Responsiveness
Build activity is limited on
weekends and holidays due to
lack of manual intervention.

Operates continuously, including
weekends, thereby maximizing
system uptime.

Efficiency in no-arch packages
Downloads are performed
individually, resulting in significant
time consumption.

Supports rapid, parallel
downloads, completing the
process within seconds to a few
minutes.

Conclusion

• Modular RISC-V Support:
Successfully developed a Fedora Linux distribution tailored for the RV64G
subset, addressing key software support gaps.

• Automation & Efficiency
Integrated the Koji build system and Python-based automation tools to reduce
manual effort and enable continuous & scalable builds.

• Ecosystem Impact
Presented a reliable and open system that helps developers and improves the
RISC-V platform for many uses.

Future Work

• Extension-Based Customization
Improve the system to support RV64GC with additional extensions, enabling
custom Linux for various RISC-V application domains.

• Optimized Dependency Management
Add a better system to manage dependencies so that rebuilding packages is
faster and more reliable.

• HPC-Optimized RISC-V Server Distribution
Develop a Fedora based RISC-V server OS optimized for high-performance
computing.

Thank you!

yogeshwars@cdac.in

surendrab@cdac.in

	Slide 1: Streamlining Fedora Linux Distributions for RISC-V: A Scalable and Automated Approach
	Slide 2: Outline
	Slide 3: Introduction
	Slide 4: Motivation
	Slide 5: Technical Background
	Slide 6: Technical Background
	Slide 7: Process Overview
	Slide 8: Development Approach
	Slide 9: Development Approach
	Slide 10: Development Approach
	Slide 11: Development Approach
	Slide 12: Development Approach
	Slide 13: Development Approach
	Slide 14: Development Approach
	Slide 15: Development Approach
	Slide 16: Development Approach
	Slide 17: Experimental Setup
	Slide 18: Results & Performance Analysis
	Slide 19: Results & Performance Analysis
	Slide 20: Conclusion
	Slide 21: Future Work
	Slide 22: Thank you!

